
So�ware Development (cs2500)
Lecture 41: Serialization

M.R.C. van Dongen

February 2, 2011

Contents
1 Outline 1

2 Saving State 2
2.1 Saving a Game . 2

3 Streams 2
3.1 How it Works . 3
3.2 What is the Object’s State? . 3

4 Serialization 4
4.1 Problems . 5
4.2 Serialization Tricks . 5

5 Deserialization 5
5.1 Order Matters . 6
5.2 Deserialization Tricks . 8

6 For Friday 8

1 Outline
In this lecture we shall study how to save objects. �ere are two ways to do this.

Hard way: Write dedicated save methods for all relevant classes.

Easy way: Implement Serializable in all relevant classes.

As part of this lecture we shall study ObjectOutputStream and ObjectInputStream objects. We shall use
these objects to write objects to and read objects from �les.

1

2 Saving State
Many real-world applications save state. For example commercial applications such as database systems.

One obvious reason why a program would need to save its state is that the computer which it’s
running on may not be able to stay on all the time. For example, there may be unforseeable power cuts,
the computer may be relocated, …. To solve the problem, the program saves and restores its data.

• �e program’s data (state) is written to a secondary backup medium: a �le on a harddisk, on a cd,
on a dvd, on a tape, ….

• �e program terminates.

• When it starts again, it reads its state from the backup medium.

Saving state is also useful for backups, data exchange, and communication.

2.1 Saving a Game
Let’s assume you’re writing an adventure game. �e game involves GameCharacter objects: Hobbit, Elf,
Ork, …. You want a save-restore option. �is let’s you play the game, save it, restore it, and continue where
you stopped. You have two options:

1. Use serialisation. To save the game you write serialized objects to a �le. (�e �le won’t make sense
to the human eye.) To restore the game you read in the serialized objects. �is is the easier option.

2. Save and restore all information to and from a text �le. �is is complicated because you have to
implement write/read methods for all classes in your application. Moreover, you may have to
change these methods each time you change your classes.

3 Streams
Let’s assume our game has three GameCharacters: frodo, a Hobbit, legolas, an Elf, and gandalf, a
Wizard. �e following four steps show how you save the objects’ GameCharacter state in the serialization
framework.

1. We create a FileOuputStream object. Using this object we can write low-level data to an external
�le.
FileOutputStream outputStream = new FileOutputStream("Game.ser"); Java

Here Game.ser is the name of the �le we’re going to write the state to.

2. We create an ObjectOuputStream. �is object is built on top of the FileOuputStream object. Using
it we can write objects to the external �le.

ObjectOutputStream os = new ObjectOutputStream(outputStream); Java

�e reason why we need to do this is that we cannot directly write objects to the FileOutputStream.

2

Object Object 01111001011001

0111
1001
0110
01

serialized object

ObjectOutputStream

object is written as bytes

FileOutputStream

�le

source
destination

written to chained to saved as

Figure 1: Writing an object to a �le.

3. Using the FileOuputStream we write the GameCharacter objects:

os.writeObject(frodo); Java

Saving the other GameCharacter objects is similar.

4. Finally, we close the ObjectOutputStream:

os.close(); Java

By closing the ObjectOutputStream object we make sure the external �le is propetly closed. You
should alway close your ObjectOutputStream objects as soon as possible. Failing to do so may result
in loss of data. For example, if there’s a power cut and the ObjectOutputStream object isn’t closed
then you may lose data. However, closing the object before the power cut makes sure your data is
properly saved.

3.1 How itWorks
When we saved our object states using the ObjetcOutputStream object, several things went on. �is
section explains what went on and how this works.

Java Streams are for doing I/O. �ere are two kinds of streams: connection streams and chain streams.
A connection stream connects a source to a destination. Possible source and destinations are �les and
network sockets. Connection streams are low-level. �ey are used to send/receive byte streams. Chain
streams are built on top of other streams. Chain streams are for high-level communication. �ey use the
underlying streams to do the communication. For example, they may translate an object to/from a byte
sequence before passing on the bytes sequence to the undelying connection stream. Figure 1 depicts the
process graphically.

3.2 What is the Object’s State?
As part of the serialization process the object’s state is saved as bytes. For objects with primitive-valued
attributes this is easy: Just write the primitive values as bytes. How does it work for attributes which are
object references?

• �e values are references: memory locations. You can’t save these. For example, you have no control
over memory at deserialization time.

3

• In reality object reference values are serialized recursively.

• Recursive serialization works properly: if two variables reference the same object before serialization,
then they also reference the same object a�er serialization.

4 Serialization
In Java, writing objects to ObjectOutputStreams is easy. All you have to do is make sure the object
you write is an instance of a class which implements the Serializable interface. If you implement this
interface, the methods that save and restore object state comes for free.

�e following shows some of the game application.
import java.io.*;
public class Game {

public static void main(String[] args) {
…
try {

FileOutputStream fileStream
= new FileOutputStream("Game.ser");

ObjectOutputStream output
= new ObjectOutputStream(fileStream);

output.writeObject(frodo);
output.writeObject(legolas);
output.writeObject(gandalf);
output.close();

} catch (Exception exception) {
handleException(exception);

}
}
…

}

Java

�e Hobbit class implements Serializable.
import java.io.Serializable;
public class Hobbit implements GameCharacter,

Serializable {
…

}

Java

�e Elf and Wizard classes are implemented similarly.
Implementing Serializable is just a contract: you can write objects from the class, and you can read

objects from the class. Serializable does not de�ne any methods. So there’s no need to @Override
anything.

�e Serializable contract is a contradiction in terms. For example, Serializable is an interface,

4

yet there’s no need for any @Override. So, what provides the implementation of readObject() and
writeObject(). �ere’s no real answer, it “just” works. Let’s call it magic.

4.1 Not all Objects are Serializable
Some objects are not Serializable.

• �ere may be several reasons for this. For example, the implementor may have forgotten to imple-
ment Serializable.

• Perhaps it was a deliberate choice ….

• �e most important reason why some objects aren’t Serializable is that certain things can-
not/should not be saved: network connections, �le objects, passwords (security problem), other
objects depending on speci�c run-time dependent experience.

Any attempt to serialize a non-Serializable object causes an exception. If an attribute should not be
serialized you mark it transient. For example, in the following class the attribute publicId is speci�c to
the Chat sessions. When a session is closed, the publicId is lost. When we’re deserializing it is impossible
to start a new session with a given publicId: we’re (more than likely) getting a di�erent publicId. �is
is why serialized is marked transient. �ere’s simply no point in saving it.
public class Chat implements Serializable {

transient int publicId; // Not serialized.
String userName; // Serialized.
…

}

Java

4.2 Tricks of the Serialization Trade
So what if you want to save a non-Serializable object? You extend the object’s class and make the
subclass Serializable. �is only works if the class is extendable. (If it is not marked final.) Of course
your program has to use the subclass throughout.

5 Deserialization
Deserialization works similar to serialization. �is time, however, you read from an ObjectInputStream
object. �e following demonstrates the main ideas.

5

import java.io.*;
public class Game {

public static void main(String[] args) {
…
try {

FileInputStream fileStream
= new FileInputStream("Game.ser");

ObjectInputStream input
= new ObjectInputStream(fileStream);

frodo = (Hobbit)input.readObject();
legolas = (Elf)input.readObject();
gandalf = (Wizard)input.readObject();
input.close();

} catch (Exception e) {
handleException();

}
…

}
}

Java

Notice that the method readObject() returns an Object reference, so we have to cast it before
assigning it to the destination object reference variable.

5.1 OrderMatters
With serializing and deserializing the order of reads and writes matters. �e serialized �le is just a
sequence of bytes. If the �rst n written bytes represent frodo then the �rst n bytes read also represent
frodo. If the next m written bytes represent legolas then the next m read bytes also represent legolas.
And so on.

�e easiest way to overcome problems related to order is writing a single object.
�e following demonstrates the main ideas. �e implementation of the methods saveGame() and

restoreGame() are provided in the next two listings. Before studying the next two listings try if you
understand why implementing the method saveGame() as an instance method is possible. Next see if
you understand why implementing restoreGame() as an instance method does not make much sense.

6

import java.io.*;
public class Game implements Serializable {

private final Hobbit hobbit = new Hobbit();
private final Elf elf = new Elf();
private final Ork ork = new Ork();

…

private void saveGame() {
〈omitted〉

}

private static Game restoreGame() {
〈omitted〉

}
}

Java

�e following is the method saveGame().
private void saveGame() {

try {
FileOutputStream fileStream

= new FileOutputStream("Game.ser");
ObjectOutputStream output

= new ObjectOutputStream(fileStream);
output.writeObject(this);
output.close();

} catch (Exception exception) {
handleException(exception);

}
}

Java

�e following is the method restorGame().

7

private static Game restoreGame() {
Game game = null;
try {

FileInputStream fileStream
= new FileInputStream("Game.ser");

ObjectInputStream input
= new ObjectInputStream(fileStream);

game = (Game)input.readObject();
input.close();

} catch (Exception exception) {
handleException(exception);

}
return game;

}

Java

5.2 Tricks of the Deserialization Trade
So what if an attribute’s object class is transient and this class is not extendable? Well, if the attribute is
transient, then attribute becomes null a�er deserializing. It is crucial that the attribute gets a proper
value. Depending on the attribute, there may be several ways to do this. If the attribute’s value doesn’t
matter you can give it a default value. If the attribute’s value does matter then you may be able to compute
it. �is is possible if your attribute’s value depends on other values. (�ese values may be instance
attributes of the object which is referenced by the attribute.)

• You save the other values at serialization time.

• You read them in at deserialization time.

• You use them to construct a new value for the attribute.

�is cause problems if the transient attribute is final.

6 For Friday
Study the lecture notes, study Chapter 13, and study Pages 429–446 of Chapter 14.

8

	Outline
	Saving State
	Saving a Game

	Streams
	How it Works
	What is the Object's State?

	Serialization
	Problems
	Serialization Tricks

	Deserialization
	Order Matters
	Deserialization Tricks

	For Friday

